k路归并(败者树,记录败者)

      败者树在外排序中用到,每加入一个数字时,调整树需要olgk),比较快。外排序过程主要分为两个阶段:(1)初始化各归并段写入硬盘,初识化的方法,可利用内排序方法还可以一种叫置换选择排序的方法(参考数据结构–李春葆)。


为什么需要败者树

     外排序过程考虑时间代价时,主要考虑访问磁盘的次数。那么基于两路归并排序的缺点在哪里呢?主要是访问磁盘的次数太多了?请看下图:


      假设初始化归并段有m个,则二路归并需要访问硬盘的次数为log2m)。按照这个方法,那是不是我们只要增加k就可以减少次数呢?答案是肯定的。就是说是k路归并的话,访问硬盘次数就是logkm)。但是这里边存在一个矛盾:如果增大k,归并的时候比较次数增加了。那我们只要找到一种可以增大k,然后比较次数又比较少的方法就行了,这就是多路归并—败者树。看下面推导:


这里边logkm)表示读取次数等于(log2m)/log2k)),比较次数n-1),如果采用多路归并树的话比较次数log2k),恰好与分母约掉,这样归并的比较次数与k无关了。


败者树调整策略

   (1)输入每个归并段的第一个记录作为归并树的叶子节点。建立初始化归并树。

    (2)两量相比较,父亲节点存储了两个节点比较的败者(节点较大的值);胜利者(较小者)可以参与更高层的比赛。这样树的顶端就是当次比较的冠军(最小者)。

    (3)调整败者树,当我们把最小者输入到输出文件以后,需要从相遇的归并段取出一个记录补上去。补回来的时候,我们就需要调整归并树,我们只需要沿着当前节点的父亲节点一直比较到顶端。比较的规则是与父亲节点比较(父亲节点只是记录了一个败者索引,我们需要通过索引找到相应的值进行比较),比较小的(胜者)可以参与更高层的比较,即可以跟他爷爷比较,一直向上,直到根节点。比较大的(失败者)留在当前节点。


败者树编程K路归并)

    在实现利用败者树编程的时候,我们把败者树的叶节点和非叶点分开定义:

    (1)叶节点存放在:b[k+1],其中b[0..k-1]存放记录,b[k]存放了一个比所有记录一个最小值,表示虚节点。

    (2)败者节点存放:ls[k],ls[1…k-1]存放各次比较的败者数组索引。ls[0]存放了最后的冠军。

注意:这里每个叶节点都是连都非叶节点上的,这个叶节点就是我们的父节点,那我们怎么算出连到那个非叶节点上呢:通过t = index + K)/2,得到我们父节点的索引t,这样我们在调整树的时候只需要比较b[ls[t]],然后一直比较就行了。

(1)败者树创建

      首先,是创建归并树,程序开始将ls[0…k-1]=K,表示第K+1(虚设)个归并段的记录当前最小。然后,我们从k-1到0,每次加入一个记录进行一次调整,算法自顶向下,直到所有记录加进来,归并树也就建好了。

#include <iostream>

using namespace std;

#define  K  5 //表示5路归并
#define MIN INT_MIN;

int b[K+1] = {17,5,10,39,15};
int ls[K] = {0};//记录败者的序号

void Adjustint s)
{
	forint t=s+K)/2; t>0; t=t/2){//t=s+k),得到与之相连ls数组的索引
		ifb[s] > b[ls[t]])//父亲节点
		{  
			int temp = s; //s永远是指向这一轮比赛最小节点 
			s = ls[t];  
			ls[t]=temp;  
		}  
	}
	ls[0] = s;//将最小节点的索引存储在ls[0]
}

void CreateLoser)
{
	b[K] = MIN;
	int i;
	fori=0;i<K;i++)ls[i]=K;  
	fori=K-1;i>=0;i--)Adjusti); //加入一个基点,要进行调整 


}
int main)
{
	CreateLoser);
	system"pause");
	return 0;
}

      图示一下创建树的过程:



(2)归并排序

读入数据,创建归并树,判断b[ls[0]]==MAX,等于表示所有记录都已输出。不等于,输出当前冠军,然后从相应归并段读入数据填上。注意,如果相应的归并段已经空了,则填上MAX。下面给出伪代码:

void K_Merge)
{
	forint i=0;i<K;i++){
		inputi);//输入到b[i]
	}
	CreateLoser);
	whileb[ls[0]]!=MAXKEY){//只要不是最大值
		q = ls[0];//得到冠军的索引
	    outputb[q]);
		intputb[q]);
		Adjustq);
	}
}


(3)整个代码(http://blog.csdn.net/tiantangrenjian/article/details/6838491

#include <iostream>  
using namespace std;  
  
#define LEN 10          //最大归并段长  
#define MINKEY -1     //默认全为正数  
#define MAXKEY 100    //最大值,当一个段全部输出后的赋值  
  
struct Array  
{  
    int arr[LEN];  
    int num;  
    int pos;  
}*A;  
  
    int k,count;  
    int *LoserTree,*External;  
  
void Adjustint s)  
{  
    int t=s+k)/2;  
    int temp;  
    whilet>0)  
    {  
        ifExternal[s] > External[LoserTree[t]])  
        {  
            temp = s;  
            s = LoserTree[t];  
            LoserTree[t]=temp;  
        }  
        t=t/2;  
    }  
    LoserTree[0]=s;  
}  
  
void CreateLoserTree)  
{  
    External[k]=MINKEY;  
    int i;  
    fori=0;i<k;i++)LoserTree[i]=k;  
    fori=k-1;i>=0;i--)Adjusti);  
}  
  
void K_Merge)  
{  
    int i,p;  
    fori=0;i<k;i++)  
    {  
        p = A[i].pos;  
        External[i]=A[i].arr[p];  
        //cout<<External[i]<<",";  
        A[i].pos++;  
    }  
    CreateLoserTree);  
    int NO = 0;  
    whileNO<count)  
    {  
        p=LoserTree[0];  
        cout<<External[p]<<",";  
        NO++;  
        ifA[p].pos>=A[p].num)External[p]=MAXKEY;  
        else   
        {  
            External[p]=A[p].arr[A[p].pos];  
            A[p].pos++;  
        }  
        Adjustp);  
    }  
    cout<<endl;  
}  
  
int main)  
{  
    freopen"in.txt","r",stdin);  
  
    int i,j;  
    count=0;  
    cin>>k;  
    A=Array *)mallocsizeofArray)*k);  
    fori=0;i<k;i++)  
    {  
        cin>>A[i].num;  
        count=count+A[i].num;  
        forj=0;j<A[i].num;j++)  
        {  
            cin>>A[i].arr[j];  
        }  
        A[i].pos=0;  
    }  
    LoserTree=int *)mallocsizeofint)*k);  
    External=int *)mallocsizeofint)*k+1));  
  
    K_Merge);  
  
    return 0;  
} 


注意点

     归并路数k增大时,相应的需要增加输入缓冲区个数。如果可供应的内存不变,这将减少每个缓冲区的容量,使得内外存交换数据次数增大。所以k值过大时,虽然归并次数减少,但读写外存次数会增加。

      另外了,考虑比较次数最小,可构造哈夫曼树。


Published by

风君子

独自遨游何稽首 揭天掀地慰生平