确定起跑线教学设计一等奖是为您推荐的内容,希望对您的学习工作带来帮助。
1、确定起跑线教学反思
这是一节数学综合实践课,是学生在掌握圆的概念和周长等知识的基础上设计的,通过这个活动:一方面让学生了解运动场跑道的结构,学会确定起跑线的方法,另一方面让学生体会到数学在生活中的广泛应用。课堂由问题“他们起跑线的位置相同吗”质疑,到“为什么起跑线位置会不同”,引入让学生明确确定起跑线位置的过程是活动的重点,理解起跑线的位置与什么有关是教学得难点。
六年级学生对活动的内容并不陌生,所以课堂用多媒体课件展示运动场,开门见山的提问“他们起跑线的位置相同吗”,“为什么起跑线位置会不同”,学生通过观察、讨论达成共识:“因为每条跑道的长度不同,所以起跑线的位置也不同,外圈的起点应该往前移。”然后出示有关信息,充分让学生借助计算器,通过小组合作计算每圈跑道的长度,从而确定起跑线的位置。
数学知识来源于生活,同时也服务于生活,应用学到的知识解决实际生活中的问题,不但使学生感受到数学与生活的密切联系,而且能培养他们的创新精神,合作精神。
2、确定起跑线教学反思
《确定起跑线》是一节利用第一单元圆的周长,让学生用数学知识研究在实际的运动比赛的起跑线的问题的实践研究课。
课的开始我设计了一场不公平的比赛,让学生发现了比赛中存在的问题,并且提出问题。学生结合自己的生活经验发表了解决问题的方法,从而找出问题的结果:弯道之差其实就是圆的周长之差。问题:如何确定每一条跑道起跑点呢?引导学生得出要确定起跑点,就要计算出相邻跑道的长度之差,怎样计算相邻跑道的长度之差?通过带学生观察体育运动场让学生知道计算相邻跑道的长度之差,与直道没关系,实质是计算由两个弯道合拢的圆的周长之差,再推导出:相邻跑道的长度之差=道宽Ⅹ2∏,让学生知道确定起跑线位置只需知道道宽即可,实现了教学重点的突破。最后让学生练习解决相关的不同问题。如,小型运动会设置200米的半圆形跑道,每条跑道宽1.2米。第2跑道比第1跑道提前多少米?这时则需要学生要灵活应用即求相邻的半圆跑道=道。
问题从实践中来,再回到实践中用所学知识解决问题,较好地培养了学生学习应用数学的意识,达到实践活动课的实践目标。
3、确定起跑线教学反思
本课是数学综合应用的实践活动课,在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位置与什么有关。所以在教学中学生可能会在“相邻跑道相差多远”这一点上有些困难。因此,让学生推导确定起跑线位置的过程及其实践运用是本节课的重点,而理解起跑线的位置与什么有关则是教学的难点。
其实6年级的学生对起跑线并不陌生,但可能很少从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你觉得他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”然后通过多媒体呈现跑道的有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
学生在小组内借助计算器试算后,汇报方法。从中对多种算法进行优化,如各条跑道直道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示的学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。由此得出最简单的.方法:相邻跑道差=∏×2×道宽。数学来源于生活,同时也服务于生活,应用学到的知识解决实际生活中的问题,不但使学生感受到数学与实际生活是密切联系的,而且能培养他们的创新精神。为此,我设计了一组练习:确定200米、800米、1500米跑步比赛中起跑线的位置。多媒体的直观性让学生学习兴趣较高,也让整堂课取得了一定的教学效果。
课后,回顾教学过程和学生的表现,也发现了值得思考的问题。
在计算方法的探究过程中,我有意放手让学生自主探究方法,再汇报。意在学生亲自动手参与计算后在汇报中把计算方法达到最优化。但在教学中对于这样的课始终“担惊受怕”,不敢太放手,匆匆的结束探究,急急的指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时也是学生说得不够,用部分学生的想法替代了全部学生的思维。
其次,对于解决问题的策略的多样化和优化的准备也似不够充分的。主要体现在让学生解决实际的比赛起跑线的问题,有个别学生在问题刚刚出示就知道了结果,这是没有想到的,虽然知道学生肯定是知道了这个实际的比赛起跑线的问题与前面的准备体之间的巧妙的联系。所以在脑海中也马上想到了在后面的方法呈现之后需要一定的归纳。体会到每相邻的两个跑道之间的距离是一样的。这样在实际的生活中就不需要每个都进行计算,而且一个弯道是相差这么多,两个弯呢?优化了学生解题策略。那1000米又为什么起跑的位置一样呢?用实际生活解释说一说,体会数学与生活的联系同差异。结合这样的一堂课的教学和体会怎样有效的处理好教材,把握好教材,确定好教学目标和重难点,以及对随机的学生课堂状况进行把握和及时地调整,这是需要在以后的教学和思考中进一步的提升。
4、确定起跑线教学反思
1、教材分析
《确定起跑线》是六年级数学上册的一节综合应用课,这节课是在学生掌握了圆的概念和周长等知识的基础上进行教学的。主要让学生经历运用圆的有关知识计算弯道长度的过程,了解“跑道的弯道部分,外圈比内圈要长”,从而体会确定起跑线的意义;理解相邻跑道的长度差与圆的周长以及起跑线位置之间的关系;掌握确定起跑线的方法,并学会确定起跑线。在观察、比较、归纳、探究的数学活动中,培养学生自主发现问题,分析问题和解决问题,并在民主的气氛中探索出规律。通过创设情境,体验数学与生活的密切联系,以及数学知识在实际生活中的广泛应用,激发学生学习热情,培养学生主动参与、解决的问题的意识。
2、教学设计
这节课,教材上没有直接就研究比赛中起跑线的问题,而是采用的一个比较简单的生活情景进行学习。针对起跑线的不同正是由于比赛中的弯道的不同所造成的,所以采用了“100米比赛各运动员的起跑位置在同一条直线上”到“400米的比赛,运动员也在同一条直线上起跑,公平吗?”这样一个简单的问题来引起学生的思考,从而来简化问题的难度“只要将起跑线往前移”即可,那么“移多少呢?”在讲例题时引导学生说出由于“半圆的半径不同,因此所走的路程也不同”。这为分析400米标准跑道确定起跑线的方法奠定了基础,在讲400米标准跑道确定起跑线的方法时,我先向学生课件展示——400米标准跑道的组成,提出问题:相邻两道之间的距离差由什么决定?通过课件演示让学生知道计算相邻跑道的长度之差与直道没关系,实质是计算由两个弯道合在一起的圆的周长之差。如果用R表示外圈大圆的半径,用r表示内圈圆的半径,那么相邻跑道的长度之差=2πR—2πr=2π(R—r)。而R—r实际上就是道宽,所以说如果题目中道宽直接告诉,则相邻跑道的长度之差=2π×道宽。如果是半圆形跑道,则相邻跑道的长度之差=π(R—r)或π×道宽。让学生知道要确定起跑线的位置,只需知道内外圆半径或道宽即可,实现了教学重点的突破。
3、反思
在巩固练习过程中,我发现部分学生在确定环形跑道起跑线的位置时,运用“外圈跑道的总长度—内圈跑道的总长度”来计算的。这样计算比较麻烦。
这也是由于我在课堂上虽然归纳了算法,但是没有把两种方法进行对比,学生还没有明确各种算法的优与劣,这也是我在以后的教学中该努力的地方。
5、确定起跑线教学反思
《确定起跑线》是一节利用第一单元圆的周长,让学生用数学知识研究在实际的运动比赛的起跑线的问题的实践研究课。
课的开始我设计了一场不公平的比赛,让学生发现了比赛中存在的问题,并且提出问题。学生结合自己的生活经验发表了解决问题的方法,从而找出问题的结果:弯道之差其实就是圆的周长之差。问题:如何确定每一条跑道起跑点呢?引导学生得出要确定起跑点,就要计算出相邻跑道的长度之差,怎样计算相邻跑道的长度之差?通过带学生观察体育运动场让学生知道计算相邻跑道的长度之差,与直道没关系,实质是计算由两个弯道合拢的圆的周长之差,再推导出:相邻跑道的长度之差=道宽Ⅹ2∏,让学生知道确定起跑线位置只需知道道宽即可,实现了教学重点的突破。
最后让学生练习解决相关的不同问题。如,小型运动会设置200米的半圆形跑道,每条跑道宽1。2米。第2跑道比第1跑道提前多少米?这时则需要学生要灵活应用即求相邻的半圆跑道=道。
问题从实践中来,再回到实践中用所学知识解决问题,较好地培养了学生学习应用数学的意识,达到实践活动课的实践目标。
6、确定起跑线教学反思
这是一节数学综合实践课,是在学生掌握了圆的概念和周长等知识的基础上设计的。通过这个活动一方面让学生了解椭圆式田径场跑道的结构,学会确定跑道的起跑线的方法;另一方面让学生切实体会到数学在体育等领域的广泛应用。由于每一学期我校都举行运动会,所以孩子们都知道有的比赛跑线不一样,但并不知道是什么原因。结合实际情况,学生能够理解“为什么起跑线位置会不同”这个问题,因此,让学生推导确定线位置的过程及其实践运用是本节课的重点,而理解起跑线位置与什么有关则是教学的难点。
其实六年级的学生对起跑线并不陌生,很少有学生会从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你认为他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”然后通过多媒体呈现跑道的有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。学生在小组内借助计算器试算后,汇报方法。从中对多种算法进行优化,如各条跑道直跑道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题,并向其他学生作出具体说明。最后让学生总结出最简单的的计算方法。
在教学中,教师“担惊受怕”稳稳地提出问题,匆匆地结束探究,急急地指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时,用部分学生的想法代了全部学生的思维。因此,本节课是否面向了全体学生还有待改进。
7、确定起跑线教学反思
这是一节数学综合实践课,是在学生掌握了圆的概念和周长等知识的基础上设计的。通过这个活动一方面让学生了解椭圆式田径场跑道的结构,学会确定跑道的起跑线的方法;另一方面让学生切实体会到数学在体育等领域的广泛应用。由于每一学期我校都举行运动会,所以孩子们都知道有的比赛跑线不一样,但并不知道是什么原因。结合实际情况,学生能够理解“为什么起跑线位置会不同”这个问题,因此,让学生推导确定线位置的过程及其实践运用是本节课的重点,而理解起跑线位置与什么有关则是教学的难点。
其实六年级的学生对起跑线并不陌生,很少有学生会从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你认为他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”
然后通过多媒体呈现跑道的有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。学生在小组内借助计算器试算后,汇报方法。从中对多种算法进行优化,如各条跑道直跑道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题,并向其他学生作出具体说明。最后让学生总结出最简单的的计算方法。
在教学中,教师“担惊受怕”稳稳地提出问题,匆匆地结束探究,急急地指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时,用部分学生的想法代了全部学生的思维。因此,本节课是否面向了全体学生还有待改进。
8、确定起跑线数学教学反思
作为一名到岗不久的老师,课堂教学是重要的工作之一,对学到的教学新方法,我们可以记录在教学反思中,我们该怎么去写教学反思呢?下面是小编为大家收集的确定起跑线数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
本课是数学综合应用的实践活动课,在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位置与什么有关。所以在教学中学生可能会在“相邻跑道相差多远”这一点上有些困难。因此,让学生推导确定起跑线位置的过程及其实践运用是本节课的重点,而理解起跑线的位置与什么有关则是教学的难点。
其实6年级的学生对起跑线并不陌生,但可能很少从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你觉得他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”然后通过多媒体呈现跑道的有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
学生在小组内借助计算器试算后,汇报方法。从中对多种算法进行优化,如各条跑道直道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示的学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。由此得出最简单的方法:相邻跑道差=∏×2×道宽。数学来源于生活,同时也服务于生活,应用学到的知识解决实际生活中的问题,不但使学生感受到数学与实际生活是密切联系的,而且能培养他们的创新精神。为此,我设计了一组练习:确定200米、800米、1500米跑步比赛中起跑线的位置。多媒体的直观性让学生学习兴趣较高,也让整堂课取得了一定的教学效果。
课后,回顾教学过程和学生的表现,也发现了值得思考的问题。
在计算方法的探究过程中,我有意放手让学生自主探究方法,再汇报。意在学生亲自动手参与计算后在汇报中把计算方法达到最优化。但在教学中对于这样的课始终“担惊受怕”,不敢太放手,匆匆的结束探究,急急的指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时也是学生说得不够,用部分学生的想法替代了全部学生的思维。
其次,对于解决问题的策略的多样化和优化的准备也似不够充分的.。主要体现在让学生解决实际的比赛起跑线的问题,有个别学生在问题刚刚出示就知道了结果,这是没有想到的,虽然知道学生肯定是知道了这个实际的比赛起跑线的问题与前面的准备体之间的巧妙的联系。所以在脑海中也马上想到了在后面的方法呈现之后需要一定的归纳。体会到每相邻的两个跑道之间的距离是一样的。这样在实际的生活中就不需要每个都进行计算,而且一个弯道是相差这么多,两个弯呢?优化了学生解题策略。那1000米又为什么起跑的位置一样呢?用实际生活解释说一说,体会数学与生活的联系同差异。结合这样的一堂课的教学和体会怎样有效的处理好教材,把握好教材,确定好教学目标和重难点,以及对随机的学生课堂状况进行把握和及时地调整,这是需要在以后的教学和思考中进一步的提升。
9、确定起跑线课后优秀教学反思
《确定起跑线》是一节利用第一单元圆的周长,让学生用数学知识研究在实际的运动比赛的起跑线的’问题的实践研究课。
课的开始我设计了一场不公平的比赛,让学生发现了比赛中存在的问题,并且提出问题。学生结合自己的生活经验发表了解决问题的方法,从而找出问题的结果:弯道之差其实就是圆的周长之差。
问题:如何确定每一条跑道起跑点呢?引导学生得出要确定起跑点,就要计算出相邻跑道的长度之差,怎样计算相邻跑道的长度之差?通过带学生观察体育运动场让学生知道计算相邻跑道的长度之差,与直道没关系,实质是计算由两个弯道合拢的圆的周长之差,再推导出:相邻跑道的长度之差=道宽Ⅹ2∏,让学生知道确定起跑线位置只需知道道宽即可,实现了教学重点的突破。最后让学生练习解决相关的不同问题。如,小型运动会设置200米的半圆形跑道,每条跑道宽1.2米。第2跑道比第1跑道提前多少米?这时则需要学生要灵活应用即求相邻的半圆跑道=道。
问题从实践中来,再回到实践中用所学知识解决问题,较好地培养了学生学习应用数学的意识,达到实践活动课的实践目标。
10、《确定起跑线》教学设计
教学目标:
1、通过数学活动让学生了解田径赛道的结构,学会确定塞到起跑线的方法。
2、结合具体实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
教学重点:通过对赛道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
教学过程:
一、视频导入:
出示关于100米和400米比赛的视频,学生认真观察,想想两种比赛规则上有什么相同和不同。
(设计意图:吸引学生的注意力,能将100米和400米比赛直观的展现在学生面前,便于学生观察和了解。联系生活,增加学生学习数学的兴趣。)
相同:都在各自的跑道上。
不同:100米为直道,400米为弯道,且400米赛道运动员的起跑线不同。
师:为什么100米站在同一起跑线上,而400米却不同?(可追加问题:如果你是一名运动员,在400米跑中你会选择哪条赛道?)
(出示图片“赛道”)
生:在外圈的吃亏,外圈比内圈长。
生:内圈的起跑线向前移动一些,终点不变,这样比赛就公平了。
(给学生足够的思考和回答时间)
师:同学的思维非常的敏锐,而且超出了老师的想想。那么外圈的起跑线究竟要向前移动多少,比赛才相对的公平呢?
(设计意图:适当的表扬和鼓励,激发学生继续探究的兴趣,为下面学习新知奠定基础。)
师:所以为了解决比赛公平的问题,我们共同研究如何“确定起跑线”,板书课题。
二、进入新课。
1、分析赛道
师讲解跑道结构:400米标准运动场一般有8条赛道,最里面的为第一道,依次为第二道,第三道……,每条赛道有内外两条线组成,每条跑道的长度指这条赛道中内测线的长度。那么(课件出示以下三个问题)
(1)400米运动场指的是那条赛道的长度?
(2)每条赛道由几部分组成?
(3)如何计算每条跑道的长度?
(设计意图:第二、三问题直接点出本课的教学重点,且难度适中,在学生思考和讨论的过程中很容易得出合理的结论,以此来增强学生学习的兴趣。)
小组讨论
小组内和同学交流你的观点,看看谁的观点更准确,方法更简便。
学生汇报小组讨论结果
生:400米运动场指的是第一条赛道的长度。
生:由4部分组成,其中有两条直道和两条弯道,两条弯道可以组成以一个圆。
生:跑道一圈的长度=2条直道的长度+一个圆的周长
2、收集数据
师:利用刚才讨论的结果,计算各赛道的长度,并把所得的数据填到信息采集表中。
(设计意图:学生用自己认为可行的办法来解决实际问题,锻炼学生的实践能力,将理论和实际结合,不空乏的.纸上谈兵。)
3、分析数据
师:如何计算相邻两跑道的长度差?
生:分别把每条跑道的程度计算出来,也就是计算两个直道长度与一个圆周长的总和,在相减,就可以知道相邻两条跑道的差。
师:谁还有更简便的计算方法么?
生:因为跑道的长度与直道无关,只要计算出各圆的周长,算出相邻两圆的周长相差多少米,就是相邻跑道的差。
师:如果我们在计算圆的周长时直接用π来表示,看我们有什么发现?
(72。6+1。25×2)π―72。6π
=72。6π―72。6π+1。25×2×π
1。25×2×π
……
4、形成结论
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:(结论)同学们经过努力终于找到了确定起跑线的秘密!只要知道跑道的宽度,就能确定起跑线的位置。
三、知识拓展:
200米、800米、1500米比赛的起跑线该如何确定?
五、小结,这节课你有什么收获?
生:为了使比赛公平,外圈跑道的起跑线要向前移动。
生:向前移动的距离是两个相邻跑道的差。
生:两个相邻跑道的长度差,只与跑道的宽度有关。
生:我知道400米跑相邻跑道的差的计算方法是
相邻赛道差=赛道宽×2×π
四、板书设计:
每条赛道的长度=两个直道的长度+圆的周长
400米跑相邻赛道的差=跑道宽×2×π
11、《确定起跑线》教学设计
教学目标
1、通过活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
重点:
能运用周长的知识确定起跑线。
难点:
理解相邻起跑线的距离与跑道宽度之间的关系。
教学过程
一、创设情境,生成问题。
师:同学们,你们看过田径比赛吗?回忆一下在运动会田径比赛中,100米比赛和400米比赛的起点位置有什么不同?
生:100米比赛的运动员在同一起跑线上,400米比赛的运动员在不同的起跑线上。
师:为什么?
生可能回答,如果400米比赛运动员在同一起跑线上,外圈跑的路程长,那样不公平,所以外圈的起跑线要向前移一些。
师:那向前移多少呢?(生不知道)这就是我们这节课要研究的如何确定起跑线。(板书课题)
二、探索交流,解决问题
(课件出示完整跑道图)
1、了解跑道结构:
小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+一个圆的周长
②内外跑道的长度不一样是因为圆的周长不一样。
2、了解了跑道的结构,你想怎样解决“400米比赛外道的起跑线要向前移多少米”的问题?
先自己思考,再与同桌说一说,最后汇报方案。
学生汇报:(预设)
(1)算出跑道的全长,外道的长度比内道长多少,外道的起跑线相应向前移多少。
(2)算出两侧半圆形跑道拼成一个整圆的周长,外圆的周长比内圆的周长长多少米,跑道就向前移几米。
(3)直接利用周长公式求周长差
预设(3)学生不容易想到,如没有提出这种想法可以在汇报的过程中渗透、明析。
3、组织学生探究
师:现在就可以按照自己设想的方案算出相邻的跑道的起跑线应相差多少米?
有困难的可以同桌互相帮助,共同完成。
教师巡视辅导。
4、汇报交流,发现规律
(1)学生汇报不同的计算方法
a、算跑道全长,
b、算圆的周长
(2)比较哪种计算方法更简单,还用更简单的方法吗?
(3)引发学生进一步思考方法二,运用公式直接计算周长差
如果我们在计算圆的周长时直接用π来表示,看有什么发现?
(72。6+1。25×2)π-72。6π
=72。6π-72。6π+1。25×2×π
=1。25×2×π
(75。1+1。25×2)π-75。1π
=75。1π-75。1π+1。25×2×π
=1。25×2×π
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:从这里可以看出:起跑线的确定与什么关系最为密切?
生:与跑道的宽度关系最为密切。
师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置
三、巩固应用,内化提高
1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1。2米呢?在运动场上还有200米的比赛,跑道宽为1。25米,起跑线又该依次提前多少米?
2、一根足够长的铁丝紧贴地面绕地球一周形成一个圆,当将这个铁
丝延长10米,然后距地面一定高度后重新绕地球一周围成一个圆,请问你能从铁丝下面走过去吗?
四、回顾整理,反思提升
通过这节课的学习,你有何收获?觉得自己表现怎样?
12、确定起跑线课后优秀教学反思
这是一节数学综合实践课,是在学生掌握了圆的概念和周长等知识的基础上设计的。通过这个活动一方面让学生了解椭圆式田径场跑道的结构,学会确定跑道的起跑线的方法;另一方面让学生切实体会到数学在体育等领域的广泛应用。由于每一学期我校都举行运动会,所以孩子们都知道有的比赛跑线不一样,但并不知道是什么原因。结合实际情况,学生能够理解“为什么起跑线位置会不同”这个问题,因此,让学生推导确定线位置的过程及其实践运用是本节课的重点,而理解起跑线位置与什么有关则是教学的难点。
其实六年级的学生对起跑线并不陌生,很少有学生会从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你认为他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”然后通过多媒体呈现跑道的有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。学生在小组内借助计算器试算后,汇报方法。
从中对多种算法进行优化,如各条跑道直跑道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题,并向其他学生作出具体说明。最后让学生总结出最简单的的计算方法。
在教学中,教师“担惊受怕”稳稳地提出问题,匆匆地结束探究,急急地指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时,用部分学生的想法代了全部学生的思维。因此,本节课是否面向了全体学生还有待改进。
13、《确定起跑线》教学反思
1、教材分析
《确定起跑线》是六年级数学上册的一节综合应用课,这节课是在学生掌握了圆的概念和周长等知识的基础上进行教学的。主要让学生经历运用圆的有关知识计算弯道长度的过程,了解“跑道的弯道部分,外圈比内圈要长”,从而体会确定起跑线的意义;理解相邻跑道的长度差与圆的周长以及起跑线位置之间的关系;掌握确定起跑线的方法,并学会确定起跑线。在观察、比较、归纳、探究的数学活动中,培养学生自主发现问题,分析问题和解决问题,并在民主的气氛中探索出规律。通过创设情境,体验数学与生活的密切联系,以及数学知识在实际生活中的广泛应用,激发学生学习热情,培养学生主动参与、解决的问题的意识。
2、教学设计
这节课,教材上没有直接就研究比赛中起跑线的问题,而是采用的一个比较简单的生活情景进行学习。针对起跑线的不同正是由于比赛中的弯道的不同所造成的,所以采用了“100米比赛各运动员的起跑位置在同一条直线上”到“400米的比赛,运动员也在同一条直线上起跑,公平吗?”这样一个简单的问题来引起学生的思考,从而来简化问题的难度“只要将起跑线往前移”即可,那么“移多少呢?”在讲例题时引导学生说出由于“半圆的半径不同,因此所走的路程也不同”。这为分析400米标准跑道确定起跑线的方法奠定了基础,在讲400米标准跑道确定起跑线的方法时,我先向学生课件展示——400米标准跑道的组成,提出问题:相邻两道之间的距离差由什么决定?
通过课件演示让学生知道计算相邻跑道的长度之差与直道没关系,实质是计算由两个弯道合在一起的圆的周长之差。如果用R表示外圈大圆的半径,用r表示内圈圆的半径,那么相邻跑道的长度之差=2πR—2πr=2π(R—r)。而R—r实际上就是道宽,所以说如果题目中道宽直接告诉,则相邻跑道的长度之差=2π×道宽。如果是半圆形跑道,则相邻跑道的长度之差=π(R—r)或π×道宽。让学生知道要确定起跑线的位置,只需知道内外圆半径或道宽即可,实现了教学重点的突破。
3、反思
在巩固练习过程中,我发现部分学生在确定环形跑道起跑线的位置时,运用“外圈跑道的总长度—内圈跑道的总长度”来计算的。这样计算比较麻烦。
这也是由于我在课堂上虽然归纳了算法,但是没有把两种方法进行对比,学生还没有明确各种算法的优与劣,这也是我在以后的教学中该努力的地方。
14、《确定起跑线》教学设计
教学内容:
人教版课程标准实验教材六年级上册第75―76页。
教学目标:
1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、通过活动培养学生利用小组合作,探究解决问题的能力。
3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
教学过程:
一、课前谈话:(3分钟)
同学们,前不久我们银川市承办了小学生运动会,我校的体育健儿们努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。
[设计意图:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围,让学生在心理安全的状态下进入学习活动。]
二、创设情景,提出问题(5分钟)
1、情景导入:小动物的运动会。
(多媒体播放)四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。
师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?
[设计意图:数学课程标准中指出数学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如:学生提出将起跑线向前移动的方法,等等。激发了学生探究问题的欲望。]
2、赛事回放:欣赏运动场上运动员起跑时的图片。
教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛,如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则,会将起跑线依次向前移。
3、提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?
4、揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。
(板书课题:确定起跑线)
[设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]
三、观察跑道、探究问题(24分钟)
(一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)
1、观察跑道由哪几部分组成?
2、在跑道上跑一圈的长度可以看成是哪几部分的和?
(板书:跑道一圈长度=圆周长+2个直道长度)
[设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两个弯道合起来其实是个圆。]
(二)简化研究问题:
1、85。96米是指哪部分的长度?一条直道吗?
2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)
[设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想到会在弯道部分。在这里教师做了一个大胆的创新:既然与直道无关,就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。]
(三)寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么?
2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
[设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]
(四)、动手解决问题:
1、计算圆的周长要知道什么?(直径)
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
3、教师带领学生填写表格的前两道,剩下的由学生完成。
跑道直径(米) 周长(米) 相邻跑道相差长度(米)
15、《确定起跑线》教学设计
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)
五、课外延伸
200m跑道如何确定起跑线?
16、《确定起跑线》教案一等奖
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的.周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、课外延伸
200m跑道如何确定起跑线?
17、《确定起跑线》教师教学反思
这是一节数学综合实践课,是在学生掌握了圆的概念和周长等知识的基础上设计的。通过这个活动一方面让学生了解椭圆式田径场跑道的结构,学会确定跑道的起跑线的方法;另一方面让学生切实体会到数学在体育等领域的广泛应用。由于每一学期我校都举行运动会,所以孩子们都知道有的比赛跑线不一样,但并不知道是什么原因。结合实际情况,学生能够理解“为什么起跑线位置会不同”这个问题,因此,让学生推导确定线位置的过程及其实践运用是本节课的重点,而理解起跑线位置与什么有关则是教学的难点。
其实六年级的学生对起跑线并不陌生,很少有学生会从数学的角度去思考200米、400米等起跑线位置为什么不同,相差多少。所以课的开始,我采用多媒体呈现了400米椭圆形跑道的一部分,用小动物的趣味运动会中准备在同一起跑线上起跑,开门见山地提出问题,“你认为他们的比赛规则合理吗?”引起学生对起跑线位置的关注与思考。经过观察共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。”然后通过多媒体呈现跑道的’有关信息,学生在老师的引导下对已获得的信息进行梳理,使学生观察表明:每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。学生在小组内借助计算器试算后,汇报方法。从中对多种算法进行优化,如各条跑道直跑道长度相同,因此跑道之间的差就在两个半圆形跑道合在一起的圆的周长的差。在这里,我充分利用多媒体动画直观演示学生思考的过程,得出两个圆的直径的差也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题,并向其他学生作出具体说明。最后让学生总结出最简单的的计算方法。
在教学中,教师“担惊受怕”稳稳地提出问题,匆匆地结束探究,急急地指名汇报,让部分学生还不知从何开始就“到此结束”。同样的情形在练习中也再次重演,当学生在汇报200米比赛中的起跑线该怎么确定时,用部分学生的想法代了全部学生的思维。因此,本节课是否面向了全体学生还有待改进。
18、《确定起跑线》优秀教学反思
《确定起跑线》是一节利用第一单元圆的周长,让学生用数学知识研究在实际的运动比赛的起跑线的问题的实践研究课。
课的开始我设计了一场不公平的比赛,让学生发现了比赛中存在的问题,并且提出问题。学生结合自己的生活经验发表了解决问题的方法,从而找出问题的结果:弯道之差其实就是圆的周长之差。问题:如何确定每一条跑道起跑点呢?引导学生得出要确定起跑点,就要计算出相邻跑道的长度之差,怎样计算相邻跑道的长度之差?通过带学生观察体育运动场让学生知道计算相邻跑道的长度之差,与直道没关系,实质是计算由两个弯道合拢的圆的周长之差,再推导出:相邻跑道的长度之差=道宽Ⅹ2∏,让学生知道确定起跑线位置只需知道道宽即可,实现了教学重点的.突破。最后让学生练习解决相关的不同问题。如,小型运动会设置200米的半圆形跑道,每条跑道宽1.2米。第2跑道比第1跑道提前多少米?这时则需要学生要灵活应用即求相邻的半圆跑道=道。
问题从实践中来,再回到实践中用所学知识解决问题,较好地培养了学生学习应用数学的意识,达到实践活动课的实践目标。
19、 《确定起跑线》教学设计一等奖
教学目标
1、通过活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
重点:
能运用周长的知识确定起跑线。
难点:
理解相邻起跑线的距离与跑道宽度之间的关系。
教学过程
一、创设情境,生成问题。
师:同学们,你们看过田径比赛吗?回忆一下在运动会田径比赛中,100米比赛和400米比赛的起点位置有什么不同?
生:100米比赛的运动员在同一起跑线上,400米比赛的运动员在不同的起跑线上。
师:为什么?
生可能回答,如果400米比赛运动员在同一起跑线上,外圈跑的路程长,那样不公平,所以外圈的起跑线要向前移一些。
师:那向前移多少呢?(生不知道)这就是我们这节课要研究的如何确定起跑线。(板书课题)
二、探索交流,解决问题
(课件出示完整跑道图)
1、了解跑道结构:
小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+一个圆的周长
②内外跑道的长度不一样是因为圆的周长不一样。
2、了解了跑道的结构,你想怎样解决“400米比赛外道的起跑线要向前移多少米”的问题?
先自己思考,再与同桌说一说,最后汇报方案。
学生汇报:(预设)
(1)算出跑道的全长,外道的长度比内道长多少,外道的起跑线相应向前移多少。
(2)算出两侧半圆形跑道拼成一个整圆的周长,外圆的周长比内圆的周长长多少米,跑道就向前移几米。
(3)直接利用周长公式求周长差
预设(3)学生不容易想到,如没有提出这种想法可以在汇报的过程中渗透、明析。
3、组织学生探究
师:现在就可以按照自己设想的方案算出相邻的跑道的起跑线应相差多少米?
有困难的可以同桌互相帮助,共同完成。
教师巡视辅导。
4、汇报交流,发现规律
(1)学生汇报不同的计算方法
a、算跑道全长,
b、算圆的周长
(2)比较哪种计算方法更简单,还用更简单的方法吗?
(3)引发学生进一步思考方法二,运用公式直接计算周长差
如果我们在计算圆的周长时直接用π来表示,看有什么发现?
(72.6+1.25×2)π-72.6π
=72.6π-72.6π+1.25×2×π
=1.25×2×π
(75.1+1.25×2)π-75.1π
=75.1π-75.1π+1.25×2×π
=1.25×2×π
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:从这里可以看出:起跑线的确定与什么关系最为密切?
生:与跑道的宽度关系最为密切。
师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置
三、巩固应用,内化提高
1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?
2、一根足够长的铁丝紧贴地面绕地球一周形成一个圆,当将这个铁
丝延长10米,然后距地面一定高度后重新绕地球一周围成一个圆,请问你能从铁丝下面走过去吗?
四、回顾整理,反思提升
通过这节课的学习,你有何收获?觉得自己表现怎样?
20、 《确定起跑线》教学设计一等奖
教学内容:
人教版课程标准实验教材六年级上册第75—76页。
教学目标:
1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、通过活动培养学生利用小组合作,探究解决问题的能力。
3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
教学过程:
一、课前谈话:(3分钟)
同学们,前不久我们银川市承办了小学生运动会,我校的体育健儿们努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。
[设计意图:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围,让学生在心理安全的状态下进入学习活动。]
二、创设情景,提出问题(5分钟)
1、情景导入:小动物的运动会。
(多媒体播放)四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。
师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?
[设计意图:数学课程标准中指出数学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如:学生提出将起跑线向前移动的方法,等等。激发了学生探究问题的欲望。]
2、赛事回放:欣赏运动场上运动员起跑时的图片。
教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛,如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则,会将起跑线依次向前移。
3、提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?
4、揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。
(板书课题:确定起跑线)
[设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]
三、观察跑道、探究问题(24分钟)
(一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)
1、观察跑道由哪几部分组成?
2、在跑道上跑一圈的长度可以看成是哪几部分的和?
(板书:跑道一圈长度=圆周长+2个直道长度)
[设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两个弯道合起来其实是个圆。]
(二)简化研究问题:
1、85.96米是指哪部分的长度?一条直道吗?
2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)
[设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想到会在弯道部分。在这里教师做了一个大胆的创新:既然与直道无关,就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。]
(三)寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么?
2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
[设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的’半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]
(四)、动手解决问题:
1、计算圆的周长要知道什么?(直径)
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
3、教师带领学生填写表格的前两道,剩下的由学生完成。
跑道直径(米) 周长(米) 相邻跑道相差长度(米)
21、 《确定起跑线》教学设计一等奖
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、 提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、 收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、 分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、 得出结论
1、看书P76页最后一图
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)
五、 课外延伸
200m跑道如何确定起跑线?
22、 《确定起跑线》教学设计一等奖
教学目标:
1、通过数学活动让学生了解田径赛道的结构,学会确定塞到起跑线的方法。
2、结合具体实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
教学重点:通过对赛道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
教学过程:
一、视频导入:
出示关于100米和400米比赛的视频,学生认真观察,想想两种比赛规则上有什么相同和不同。
(设计意图:吸引学生的注意力,能将100米和400米比赛直观的展现在学生面前,便于学生观察和了解。联系生活,增加学生学习数学的兴趣。)
相同:都在各自的跑道上。
不同:100米为直道,400米为弯道,且400米赛道运动员的起跑线不同。
师:为什么100米站在同一起跑线上,而400米却不同?(可追加问题:如果你是一名运动员,在400米跑中你会选择哪条赛道?)
(出示图片“赛道”)
生:在外圈的吃亏,外圈比内圈长。
生:内圈的起跑线向前移动一些,终点不变,这样比赛就公平了。
(给学生足够的思考和回答时间)
师:同学的思维非常的敏锐,而且超出了老师的想想。那么外圈的起跑线究竟要向前移动多少,比赛才相对的公平呢?
(设计意图:适当的表扬和鼓励,激发学生继续探究的兴趣,为下面学习新知奠定基础。)
师:所以为了解决比赛公平的问题,我们共同研究如何“确定起跑线”,板书课题。
二、进入新课。
1、分析赛道
师讲解跑道结构:400米标准运动场一般有8条赛道,最里面的为第一道,依次为第二道,第三道……,每条赛道有内外两条线组成,每条跑道的长度指这条赛道中内测线的长度。那么(课件出示以下三个问题)
(1)400米运动场指的是那条赛道的长度?
(2)每条赛道由几部分组成?
(3)如何计算每条跑道的长度?
(设计意图:第二、三问题直接点出本课的教学重点,且难度适中,在学生思考和讨论的过程中很容易得出合理的结论,以此来增强学生学习的兴趣。)
小组讨论
小组内和同学交流你的观点,看看谁的观点更准确,方法更简便。
学生汇报小组讨论结果
生:400米运动场指的是第一条赛道的长度。
生:由4部分组成,其中有两条直道和两条弯道,两条弯道可以组成以一个圆。
生:跑道一圈的长度=2条直道的长度+一个圆的周长
2、收集数据
师:利用刚才讨论的结果,计算各赛道的长度,并把所得的数据填到信息采集表中。
(设计意图:学生用自己认为可行的办法来解决实际问题,锻炼学生的实践能力,将理论和实际结合,不空乏的纸上谈兵。)
3、分析数据
师:如何计算相邻两跑道的长度差?
生:分别把每条跑道的程度计算出来,也就是计算两个直道长度与一个圆周长的总和,在相减,就可以知道相邻两条跑道的差。
师:谁还有更简便的计算方法么?
生:因为跑道的长度与直道无关,只要计算出各圆的周长,算出相邻两圆的周长相差多少米,就是相邻跑道的差。
师:如果我们在计算圆的周长时直接用π来表示,看我们有什么发现?
(72.6+1.25×2)π-72.6π
=72.6π-72.6π+1.25×2×π
1.25×2×π
……
4、形成结论
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:(结论)同学们经过努力终于找到了确定起跑线的秘密!只要知道跑道的宽度,就能确定起跑线的位置。
三、知识拓展:
200米、800米、1500米比赛的起跑线该如何确定?
五、小结,这节课你有什么收获?
生:为了使比赛公平,外圈跑道的起跑线要向前移动。
生:向前移动的距离是两个相邻跑道的差。
生:两个相邻跑道的长度差,只与跑道的宽度有关。
生:我知道400米跑相邻跑道的差的计算方法是
相邻赛道差=赛道宽×2×π
四、板书设计:
每条赛道的长度=两个直道的长度+圆的周长
400米跑相邻赛道的差=跑道宽×2×π
23、《确定起跑线六年级数学上册教案一等奖
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的`宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)
五、课外延伸
200m跑道如何确定起跑线?
24、六年级数学上《圆:确定起跑线》优秀教学设计一等奖
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、 提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、 收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、 分析数据
学生对于获取的’数据进行整理,通过讨论明确一下信息
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、 得出结论
1、看书P76页最后一图
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)
五、 课外延伸
200m跑道如何确定起跑线?
25、《起跑线》教学反思
现代思维科学认为:问题是思维的起点,创新的基石。质疑,是发现的设想,是探究的动力,是创新的前提。加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的’能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。
数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:
1、分别算出每个跑道的长度,再相减。
2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。
26、起跑线小学数学教学反思
这是一节与生活(体育)密切相关的实用性强的数学实践活动课。在本课的教学处理上,我注重了以下几个方面。
1、用简单情境降低学习难度。
针对数学课堂抽象问题与实际问题之间存在的差异,在课本上也没有直接就研究实际比赛中的起跑线的问题,而是采用的一个比较简单的生活情景进行学习。针对起跑线的不同正是由于比赛中的弯道的.不同所造成的,所以采用的这样的一个仅仅只是简单两个人跑半圆开始,来简化问题的难度。
2、将解决问题的策略有效地用于课堂教学。
在本节课的设计中我将解决问题的步骤和策略贯穿始终,既注重了数学知识的教学,又注重了数学学习方法的教学。学生不但丰富了知识,更重要的是他们学到了解决数学问题的基本步骤和策略。
3、层层深入的教学设计。
我在本节课的教学设计中层层深入,循序渐进。而在第三部分的最后却给了学生们紧张情绪的一个释放机会,在研究完400米跑道的起跑线问题后,教师提出了200米跑道的起跑线如何确定的问题,学生在初接到这道题时都感叹于简单,其实在真正完成时才发现,无论是什么样的跑道,都首先要分析具体跑道的形状,有几个弯道,再来解决起跑线的问题。学生们从这道题中更深一步地感受到起跑线的确定一定要结合具体的跑道形状才能来确定。
27、《起跑线》教学反思
这是一堂六年级的利用已有的数学知识研究学习在实际的运动比赛的起跑线的问题的实践研究课。针对数学课堂抽象问题与实际问题之间存在的差异,在课本上也没有直接就研究实际比赛中的起跑线的问题,而是采用的一个比较简单的生活情景进行学习。针对起跑线的不同正是由于比赛中的弯道的不同所造成的,所以采用的这样的一个仅仅只是简单两个人跑半圆开始,来简化问题的难度。所以在课前设计的时候也是这样想的,整个课的效果也达到了预期的目标,不过还是有几个值得思考的问题。
首先是课前对难点的突破设计还是有些不足,主要体现在两个地方。
一是在课前准备的时候对于准备题的设计仅仅只是到相邻运动员的路程差就结束了,没有继续往下进一步的深入。直到课堂上上到这里的时候,才想到需要结合后面的比赛来说一说,公平吗?为什么?怎样才公平?这样学生就可以轻易的想到需要调整起点的不同!为后面的比赛的起跑线不同做好从分的准备。
二是对于实际的起跑线学生可以直观的知道有先后的不同,也知道该怎样排先后,可是要学生帮忙计算,有些学生觉得需要计算整个路程的`长度,包括直道和弯道。这个问题的处理也就成了这堂课的一个难点,所以直接让学生动手不能解决,课堂上就及时地让学生思考了这样一个问题:起跑线的不同是怎样造成的?让学生体会问题的本质,知道转化前面研究过的问题。
其次,对于解决问题的策略的多样化和优化的准备也似不够成分的。主要体现在让学生解决实际的比赛起跑线的问题,在问题刚刚出示,我就要求知道结果,导致学生一片茫然。我运用计算的方法让学生直观的感受到跑道的长度跟知道没有关系,仅仅与圆周长有关,到底有什么关系?我就一道学生求出相邻跑到之间的差。
外跑到周长—相邻跑到周长=∏×(外直径-内直径)
=2×∏×跑道宽
结合这样的一堂课的教学和体会,怎样有效的处理好教材,把握好教材,确定好教学目标和重点难点,以及对随机的学生课堂状况进行把握和及时地调整,这是需要在以后的教学和思考中进一步的提升。
28、《起跑线》的教学反思
现代思维科学认为:问题是思维的起点,创新的基石。
“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的’能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。
数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。
例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。
教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:
1、分别算出每个跑道的长度,再相减。
2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。