在工程中,经常会遇到积分问题,这时原函数往往都是找不到的,因此就需要用计算方法的数值积分来求。
public class Integral { /// <summary> /// 梯形公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double TiXingFunc<double, double> fun, double up, double down) { return up - down) / 2 * funup) + fundown)); } /// <summary> /// 辛普森公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double SimpsonFunc<double, double> fun, double up, double down) { return up - down) / 6 * funup) + fundown) + 4 * funup + down) / 2)); } /// <summary> /// 科特克斯公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double CotesFunc<double, double> fun, double up, double down) { double C = up - down) / 90 * 7 * funup) + 7 * fundown) + 32 * funup + 3 * down) / 4) + 12 * funup + down) / 2) + 32 * fun3 * up + down) / 4)); return C; } /// <summary> /// 复化梯形公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="N">区间划分快数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double FuHuaTiXingFunc<double, double> fun, int N, double up, double down) { double h = up - down) / N; double result = 0; double x = down; for int i = 0; i < N - 1; i++) { x += h; result += funx); } result = funup) + result * 2 + fundown)) * h / 2; return result; } /// <summary> /// 复化辛浦生公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="N">区间划分快数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double FSimpsonFunc<double, double> fun, int N, double up, double down) { double h = up - down) / N; double result = 0; for int n = 0; n < N; n++) { result += h / 6 * fundown) + 4 * fundown + h / 2) + fundown + h)); down += h; } return result; } /// <summary> /// 复化科特斯公式 /// </summary> /// <param name="fun">被积函数</param> /// <param name="N">区间划分快数</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double FCotesFunc<double, double> fun, int N, double up, double down) { double h = up - down) / N; double result = 0; for int n = 0; n < N; n++) { result += h / 90 * 7 * fundown) + 32 * fundown + h / 4) + 12 * fundown + h / 2) + 32 * fundown + 3 * h / 4) + 7 * fundown + h)); down += h; } return result; } /// <summary> /// 龙贝格算法 /// </summary> /// <param name="fun">被积函数</param> /// <param name="e">结果精度</param> /// <param name="up">积分上限</param> /// <param name="down">积分下限</param> /// <returns>积分值</returns> public static double RombergFunc<double, double> fun, double e, double up, double down) { double R1 = 0, R2 = 0; int k = 0; //2的k次方即为N(划分的子区间数) R1 = 64 * Cfun, 2 * int)Math.Pow2, k), up, down) - Cfun, int)Math.Pow2, k++), up, down)) / 63; R2 = 64 * Cfun, 2 * int)Math.Pow2, k), up, down) - Cfun, int)Math.Pow2, k++), up, down)) / 63; while Math.AbsR2 - R1) > e) { R1 = R2; R2 = 64 * Cfun, 2 * int)Math.Pow2, k), up, down) - Cfun, int)Math.Pow2, k++), up, down)) / 63; } return R2; } private static double SFunc<double, double> fun, int N, double up, double down) { return 4 * FuHuaTiXingfun, 2 * N, up, down) - FuHuaTiXingfun, N, up, down)) / 3; } private static double CFunc<double, double> fun, int N, double up, double down) { return 16 * Sfun, 2 * N, up, down) - Sfun, N, up, down)) / 15; } }