在用python进行图像处理时,二值化是非常重要的一步,现总结了自己遇到过的6种 图像二值化的方法(当然这个绝对不是全部的二值化方法,若发现新的方法会继续新增)。
相关学习推荐:python视频教程
1. opencv 简单阈值 cv2.threshold
2. opencv 自适应阈值 cv2.adaptiveThreshold 自适应阈值中计算阈值的方法有两种:mean_c 和 guassian_c ,可以尝试用下哪种效果好)
3. Otsu's 二值化
例子:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread'scratch.png', 0) # global thresholding ret1, th1 = cv2.thresholdimg, 127, 255, cv2.THRESH_BINARY) # Otsu's thresholding th2 = cv2.adaptiveThresholdimg, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) # Otsu's thresholding # 阈值一定要设为 0 ! ret3, th3 = cv2.thresholdimg, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # plot all the images and their histograms images = [img, 0, th1, img, 0, th2, img, 0, th3] titles = [ 'Original Noisy Image', 'Histogram', 'Global Thresholding v=127)', 'Original Noisy Image', 'Histogram', "Adaptive Thresholding", 'Original Noisy Image', 'Histogram', "Otsu's Thresholding" ] # 这里使用了 pyplot 中画直方图的方法, plt.hist, 要注意的是它的参数是一维数组 # 所以这里使用了 numpy ) ravel 方法,将多维数组转换成一维,也可以使用 flatten 方法 # ndarray.flat 1-D iterator over an array. # ndarray.flatten 1-D array copy of the elements of an array in row-major order. for i in range3): plt.subplot3, 3, i * 3 + 1), plt.imshowimages[i * 3], 'gray') plt.titletitles[i * 3]), plt.xticks[]), plt.yticks[]) plt.subplot3, 3, i * 3 + 2), plt.histimages[i * 3].ravel), 256) plt.titletitles[i * 3 + 1]), plt.xticks[]), plt.yticks[]) plt.subplot3, 3, i * 3 + 3), plt.imshowimages[i * 3 + 2], 'gray') plt.titletitles[i * 3 + 2]), plt.xticks[]), plt.yticks[]) plt.show)
结果图:
4. skimage niblack阈值
5. skimage sauvola阈值 主要用于文本检测)
例子:
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_niblack_sauvola.html
import matplotlib
import matplotlib.pyplot as plt
from skimage.data import page
from skimage.filters import threshold_otsu, threshold_niblack,
threshold_sauvola)
matplotlib.rcParams['font.size'] = 9
image = page)
binary_global = image > threshold_otsuimage)
window_size = 25
thresh_niblack = threshold_niblackimage, window_size=window_size, k=0.8)
thresh_sauvola = threshold_sauvolaimage, window_size=window_size)
binary_niblack = image > thresh_niblack
binary_sauvola = image > thresh_sauvola
plt.figurefigsize=8, 7))
plt.subplot2, 2, 1)
plt.imshowimage, cmap=plt.cm.gray)
plt.title'Original')
plt.axis'off')
plt.subplot2, 2, 2)
plt.title'Global Threshold')
plt.imshowbinary_global, cmap=plt.cm.gray)
plt.axis'off')
plt.subplot2, 2, 3)
plt.imshowbinary_niblack, cmap=plt.cm.gray)
plt.title'Niblack Threshold')
plt.axis'off')
plt.subplot2, 2, 4)
plt.imshowbinary_sauvola, cmap=plt.cm.gray)
plt.title'Sauvola Threshold')
plt.axis'off')
plt.show)
结果图:
6.IntegralThreshold主要用于文本检测)
使用方法: 运行下面网址的util.py文件
https://github.com/Liang-yc/IntegralThreshold
结果图:
