一、DDPG算法入门
Deep Deterministic Policy Gradient (DDPG)算法是深度强化学习中的一种重要算法。DDPG算法结合了深度学习中的Q-learning和无模型策略梯度Policy Gradient方法,能够解决连续动作空间的问题。DDPG算法采用了Actor-Critic框架,其中Actor网络用来学习策略函数,Critic网络用来学习状态值函数。
DDPG算法的核心思想在于,在连续动作空间中,每个动作的概率密度函数是连续的,因此无法使用简单的计算概率密度的方法来确定每个动作的概率。DDPG算法采用了一种基于actor-critic方法的方法来解决这个问题。Actor网络输出一个连续的动作,Critic网络则评估这个动作的好坏,Actor网络以此为基础来调整自己的参数,最终学习到合理的策略函数。在训练过程中,DDPG算法采用了经验回放和目标网络来避免算法过拟合,提高了算法的稳定性。
二、DDPG算法实现
DDPG算法可以使用Python代码来实现。以下是一个DDPG算法的实现的示例。
import gym
import tensorflow as tf
import numpy as np
from collections import deque
import random
class DDPG:
def __init__(self):
self.env= gym.make('Pendulum-v0')
self.n_states= self.env.observation_space.shape[0]
self.n_actions= self.env.action_space.shape[0]
self.memory_size= 10000
self.memory= deque(maxlen= self.memory_size)
self.sess= tf.Session()
self.batch_size= 128
self.gamma= 0.99
self.actor_lr= 0.0001
self.critic_lr= 0.001
self.noise_factor= 0.1
self.steps= 0
self.states= tf.placeholder(tf.float32, [None, self.n_states], 'states')
self.actions= tf.placeholder(tf.float32, [None, self.n_actions], 'actions')
self.rewards= tf.placeholder(tf.float32, [None, 1], 'rewards')
self.next_states= tf.placeholder(tf.float32, [None, self.n_states], 'next_states')
self.terminals= tf.placeholder(tf.float32, [None, 1], 'terminals')
self.actor= self.build_actor('actor', trainable= True, reuse= False)
self.target_actor= self.build_actor('target_actor', trainable= False, reuse= False)
self.critic= self.build_critic('critic', trainable= True, reuse= False)
self.target_critic= self.build_critic('target_critic', trainable= False, reuse= False)
self.actor_params= tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='actor')
self.target_actor_params= tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_actor')
self.critic_params= tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='critic')
self.target_critic_params= tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_critic')
self.hard_target_update= [tf.assign(target, value) for target, value in zip(self.target_actor_params+self.target_critic_params, self.actor_params+self.critic_params)]
self.actor_loss= -tf.reduce_mean(self.critic([self.states, self.actor(self.states)]))
self.actor_train_op= tf.train.AdamOptimizer(self.actor_lr).minimize(self.actor_loss, var_list= self.actor_params)
target_q= self.rewards+ self.gamma* self.target_critic([self.next_states, self.target_actor(self.next_states)])* (1- self.terminals)
self.critic_loss= tf.reduce_mean(tf.square(target_q- self.critic([self.states, self.actions])))
self.critic_train_op= tf.train.AdamOptimizer(self.critic_lr).minimize(self.critic_loss, var_list= self.critic_params)
self.sess.run(tf.global_variables_initializer())
def build_actor(self, scope, trainable= True, reuse= False):
with tf.variable_scope(scope, reuse= reuse):
hidden1= tf.layers.dense(inputs= self.states, units= 256, activation= tf.nn.relu, trainable= trainable)
hidden2= tf.layers.dense(inputs= hidden1, units= 128, activation= tf.nn.relu, trainable= trainable)
output= tf.layers.dense(inputs= hidden2, units= self.n_actions, activation= tf.nn.tanh, trainable= trainable)
scaled_output= tf.multiply(output, np.asarray([self.env.action_space.high]), name= 'scaled_output')
return scaled_output
def build_critic(self, scope, trainable= True, reuse= False):
with tf.variable_scope(scope, reuse= reuse):
state_hidden1= tf.layers.dense(inputs= self.states, units= 256, activation= tf.nn.relu, trainable= trainable)
action_hidden= tf.layers.dense(inputs= self.actions, units= 128, activation= tf.nn.relu, trainable= trainable)
state_hidden2= tf.layers.dense(inputs= state_hidden1+ action_hidden, units= 128, activation= tf.nn.relu, trainable= trainable)
output= tf.layers.dense(inputs= state_hidden2, units= 1, activation= None, trainable= trainable)
return output
def add_data(self, state, action, reward, next_state, terminal):
self.memory.append([state, action, reward, next_state, terminal])
def noise(self, action, noise_factor):
noise= noise_factor* self.env.action_space.high* np.random.randn(self.n_actions)
action= action+ noise
return np.clip(action, self.env.action_space.low, self.env.action_space.high)
def train(self):
minibatch= random.sample(self.memory, self.batch_size)
states= np.array([m[0] for m in minibatch])
actions= np.array([m[1] for m in minibatch])
rewards= np.array([m[2] for m in minibatch])
next_states= np.array([m[3] for m in minibatch])
terminals= np.array([m[4] for m in minibatch])
self.sess.run(self.actor_train_op, feed_dict= {self.states: states})
self.sess.run(self.critic_train_op, feed_dict= {self.states: states, self.actions: actions, self.rewards: rewards, self.next_states: next_states, self.terminals: terminals})
self.sess.run(self.hard_target_update)
def run(self):
state= self.env.reset()
reward_sum= 0
for i in range(1000):
self.env.render()
action= self.sess.run(self.actor, feed_dict= {self.states: state.reshape((1, self.n_states))})
action= self.noise(action, self.noise_factor)
next_state, reward, terminal, _= self.env.step(action[0])
self.add_data(state, action[0], reward, next_state, terminal)
reward_sum+= reward
state= next_state
self.steps+= 1
if self.steps> self.batch_size:
self.train()
if terminal:
print('Reward for episode %d: %d'%(i+1, reward_sum))
reward_sum= 0
state= self.env.reset()
三、DDPG算法背后的实现原理
DDPG算法背后的实现原理包括Actor网络和Critic网络。其中,Actor网络是用来学习策略函数的,Critic网络则用来评估这个策略函数的好坏。这两个网络会不断地相互协作,来提升算法的性能。
Actor网络通常使用全连接神经网络来实现。在训练过程中,Actor网络会经过一系列的参数调整,使得输出的策略函数更加合理。Critic网络通常使用Q值函数来评估策略函数的好坏。
在DDPG算法中,为了让算法更加稳定,引入了两个重要的技术:经验回放和目标网络。经验回放可以使得我们更好地利用之前的经验来更新策略函数和Q值函数。目标网络则通过周期性地更新网络的参数来消除拟合误差,使得算法能够更加稳定地训练。
四、DDPG算法的应用
DDPG算法可以应用于大量的强化学习问题。例如,在许多实际的控制问题中,模型通常是未知的。然而,通过使用DDPG算法,我们可以仅通过环境和奖励信号来训练智能体。DDPG算法也可以应用于人工智能和机器学习中的其他问题,例如自适应控制和数据挖掘。
五、总结
DDPG算法是一种高效、稳定的深度强化学习算法。通过使用Actor网络和Critic网络,以及经验回放和目标网络等技术,DDPG算法可以有效地解决连续动作空间的问题。DDPG算法被广泛应用于控制问题、人工智能和机器学习等问题中,并在这些领域取得了广泛的应用。
